Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate
نویسندگان
چکیده
Long pulse or steady state operation of fusion experiments require data acquisition and processing systems that reduce the volume of data involved. The availability of self-adaptive sampling rate systems and the use of real-time lossless data compression techniques can help solve these problems. The former is important for continuous adaptation of sampling frequency for experimental requirements. The latter allows the maintenance of continuous digitization under limited memory conditions. This can be achieved by permanent transmission of compressed data to other systems. The compacted transfer ensures the use of minimum bandwidth. This paper presents an implementation based on intelligent test and measurement system (ITMS), a data acquisition system architecture with multiprocessing capabilities that permits it to adapt the system's sampling frequency throughout the experiment. The sampling rate can be controlled depending on the experiment's specific requirements by using an external dc voltage signal or by defining user events through software. The system takes advantage of the high processing capabilities of the ITMS platform to implement a data reduction mechanism based in lossless data compression algorithms which are themselves based in periodic deltas.
منابع مشابه
Improving the Resilience of Military Hospitals Through Self-Adaptation of Hospital Systems Using Organic Computing
Background and Aim: Among the failures of a disaster, the disruption of the critical infrastructure of the community causes the most damage to society. Therefore, the ability of critical infrastructure such as hospitals to anticipate, absorb, adapt or rapidly recover from a devastating event is essential. The purpose of this study is to design a self-adaptive model for resilient hospital system...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملThe Structural Relationships Model of Mindfulness and Self-Compassion with Body Shame through Body Appreciation in Cancer Patients
Introduction: Cancer disease can cause body shame in patients by causing physical changes, which needs to be researched. Therefore, the present study was done aimed to investigate the structural relationship model of mindfulness and self-compassion with body shame through body appreciation in cancer patients. Methods: The research method was descriptive and correlational. The statistical popul...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کامل